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Abstract-The method of expansion of three-dimensional displacements in a double power series of the
transverse coordinates is employed to find one-dimensional equations applicable to low frequency vibrations
of uniform, elastic, isotropic and anisotropic bars. The axial displacements accompanying torsion are chosen
specially for each cross-sectional shape of bar-resulting in the correct, or nearly correct, torsional rigidity.
Applications are to bars of elliptic, triangular and rectangular sections, illustrating various independent and
coupled extensional, flexural and torsional modes of motion.

I. INTRODUCTION

Poisson's [1] reduction of the three-dimensional equations of linear elasticity to one-dimensional
equations of low frequency extensional, flexural and torsional motions of bars, by means of
series expansion followed by truncation, has been the subject of many revisions, modernizations,
amplifications and extensions to higher frequencies-most recently, for example, by Volterra [2],
Medick[3,4], Bleustein and Stanley[5], D6kmeci[6] and A. E. Green, Naghdi and Wenner[7].
(References to earlier papers may be found in the review articles by W. A. Green [8], Abramson,
Plass and Ripperger [9], Miklowitz[10] and Redwood [11]). Before proceeding with developments
at high frequencies, there remains a modification that can be made at the low frequency end of
the torsional part of the motion and also affects high frequencies-as will be shown subsequently.

In the linear theory, the usual process of truncation of a power series expansion of the
displacements, Ui, i = 1, 2, 3, involves the retentian of all or part of a sequence of early terms; e.g.
if the axis of the bar is along x I,

(1.1)

where the u,m,n are functions of XI and time, t, only. These terms readily accommodate low
frequency extensional and flexural motions since, in those cases, the three-dimensional
displacements approach the approximate forms, as the frequency approaches zero and the wave
length approaches infinity, so that, at the limit, the extensional and flexural rigidities are exact.
However, in the case of torsion, only the bar of elliptic (including circular) section has
displacements that can be represented by (1.1), or part of it, at the zero frequency, long wave
limit. For all other sections, the axial displacement is more complicated.

Since each section has its peculiar axial displacement in torsion, it is necessary to eschew a
restriction to one or a few terms as a universal approximation for all sections if an ad hoc
correction factor is to be avoided. The series of transverse components of displacement, Uzm,n,

U3 m.n, may be truncated as usual, but an infinite series of axial components can be retained in the
derivation of a set of approximate equations applicable to all sections. Then, for each section to
which the equations are applied, a select few terms, not necessarily early ones, may be chosen
judiciously. As has been shown[12], the selection can be made so that the exact, St. Venant
torsional rigidity is obtained for the infinity of sections for which the St. Venant torsion function
is a polynomial in the transverse coordinates [13]. For other sections, a close approximation to the
St. Venant result may be found; for example, the two term selection Ul

1
,\ U/,l produces an error

of only 0·1 % for the square section.
As usual, the order of the system of one-dimensional differential equations governing the

motion is twice the number of components of displacement retained. However, the additional
axial components do not contribute to the order of the final system as they are accompanied by an
equal number of linear, algebraic equations relating them to the lower order terms. The solution
of this system of simultaneous equations serves to eliminate the additional displacements-in
effect allows their free development-and leaves, finally, only a single, second order differential

27



28 R. D. MINDLIN

equation governing the torsional motion. The scheme is analogous to the elimination of the
contour strains in the usual low frequency approximation for extensional vibrations-which is
also adopted here: the contour stresses (those in the normal plane) are set equal to zero and the
resulting equations are used to eliminate the contour strains from the stress-strain relations;
leading, ultimately, to a single, second order differential equation governing the axial
displacement.

In addition to the second order differential equations for low frequency torsion and extension,
there are two pairs of second order equations for flexure-also with vanishing contour stresses in
the low frequency approximation. However, the Bernoulli-Euler equations (the most elementary
form) are not good approximations to nearly as high frequencies as are the elementary equations
for torsion and extension. Accordingly, the Timoshenko shear deformation terms [14], which do
not raise the order of the differential equations, are retained to the end that, in the case of
anisotropic bars in which flexure may be coupled with torsion and extension, the various
equations are valid up to comparable frequencies.

The rotatory inertia terms which, together with the Timoshenko shear deformation, produce
the fundamental, high frequency axial shear modes, are, in general, omitted from the equations of
flexure as they introduce complications that are better left to a treatment of high frequency
vibrations. In the first place, anisotropy may produce coupling between flexure and extension or
torsion and, except possibly for torsion of circular or near circular sections, the approximations
for extension and torsion are not valid to frequencies as high as those of the fundamental axial
shear modes. Secondly, the shape of the cross-section of the bar may be such that a contour
mode (one in which the displacement is in the plane of the normal section) may have a low
frequency cut-off lower than that of either or both of the fundamental axial shear modes. An
extreme example is that of a strip or blade for which one or even more than one of the contour
flexure modes may have a lower frequency than that of even the lower of the fundamental axial
shear modes. Since the contour stresses are neglected, in the low frequency approximation, there
can be no contour modes and their absence is one of the factors which must be taken into account
in deciding whether or not to include one or both of the rotatory inertia terms. Except for certain
types of approximation valid only at very long wave lengths [15-17], it is not permissible to omit
intermediate branches; and, of course, it is foolish to employ approximate equations which take
into account branches higher than those of influence in the frequency range of interest. Medick,
in his studies of high frequency extensional vibrations of isotropic bars of rectangular
section [3,4], appears to have been the first properly to take into account such complications.

In Section 2, which follows, there is summarized a now familiar process of obtaining a doubly
infinite series of one-dimensional equations of motion, end conditions and stress-strain­
displacement relations from the three dimensional equations of linear elasticity. Next, in Section
3, the truncation of the series for the low frequency approximation is effected. The main features
of the truncation are: the elimination of the contour modes; the retention of the fundamental axial
shear deformations but not, in general, the accompanying rotatory inertias; the retention of an
unlimited number of axial displacement terms and the establishment of an equal number of linear
algebraic equations to relate them to the lower order displacements. In Section 4, the six
stress-equations of motion and boundary conditions are stated for the six surviving dependent
variables: three components of displacement and three of rotation. The next three sections
contain applications to extensional, torsional and flexural motions of isotropic bars of elliptic,
equilateral triangular and rectangular cross-sections as examples, increasing in complexity, of the
selection of terms from the infinite series of axial displacements. The calculations of the torsional
rigidities have been described before [12], but are summarized here for completeness and ready
reference. Section 8 contains a treatment of the bar of elliptic section and the most general crystal
anisotropy-resulting in the coupling of all four modes of motion: extension, torsion and two
flexures. This is followed, in Section 9, by a detailed application to a free-ended quartz bar, of
elliptic section, with the trigonal axis and a digonal axis of elastic symmetry parallel to the
principal axes of the ellipse-in which case one of the flexures is coupled with extension and the
other with torsion, but the two pairs are not coupled. In Section 10 an analysis by Voigt[l8, p.
641] is reviewed to explain why, except for the elliptic section, the absence of the contour modes
restricts the allowable anisotropies to those for which the normal section of the bar is a plane of
elastic symmetry. Such a bar, of rectangular section, is treated in the final section,
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2. EXPANSION IN POWER SERIES

From the linear theory of elasticity we need, for the present purposes, only the
stress-strain-displacement relations and a variational equation of motion. The former are

in which the Tij, i,j = 1,2,3 (or Tr, r = I .. , 6) are the components of stress; the Sij (or S"
s = 1 ... 6) are the components of strain, where

the Ui are the components of displacement; and the Cijkl (or crs ) are the elastic stiffnesses.
The variational equation of motion, for a body occupying a volume V, bounded by a surface S

with outward normal n on which act surface tractions tj , is [19, p. 115]

(2.3)

from which follow the stress-equations of motion,

(2.4)

and boundary conditions sufficient, in the absence of singularities and discontinuities, to assure a
unique solution of the fifteen equations (2.1), (2.2) and (2.4): specification, at each point P, on S,
of one member of each of the three products

(2.5)

where n, S, t are orthogonal directions at P.
The cross-sections of the uniform bar are positioned with their centroids on the axis of Xl and

their principal axes along X2 and X3. The components of displacement are expanded in a double
series of powers of the transverse coordinates:

Ul = L L X2 mX/Ui
m

··(XJ.t) = 2: X2 mX/ ut'·,
m=O "=0 m,n=O

(2.6)

where X2 m and x/ are the mth and nth powers of X2 and X3 while ut·n (x" t) is the amplitude (x,
and t dependent) of the mnth term of the series. The single summation sign, for the double
summation, is employed, in the sequel, to save space.

From (2.2) and (2.6), the components of strain may be expressed as

where

S " m·sm.•
ij = L.J X2 X3 ij

m,n=O

or Sr = L X2 mX/Srm
.•,

m,n=O
(2.7)

(2.8)

in which tilj is the Kronecker delta and the relation of the Srm
•• to the S7;-· is the same as that

between the Sr and the Sij. Note that, since the ut·· are independent of X2 and X3, the differential
quotients U ;J.n are zero except if i = 1.

Upon substituting the expansion (2.6) in the variational equation (2.3), we find, for a bar with
ends at x, = ± I and cross-sections with area A and contour C,
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where
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i Jt'dtf' (T;'j'"- mT-;j-I,n- nT~,n-1 + Ft,n - pum,n)but,n dXI
m,n ~O to -I

x It+ L I dt [tt,n - T;'j'" l' Ibut" = 0,
m.n=-(l to

F m," 1, t m "d
j = Yc jX2 x, S,

(jjm.n == L Im+r,n+Qii/,q,
p.q =0

(2,9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

Note that, since X2 and X3 are principal axes of the section of the bar,

[',0 = 1°,1 = I'" = O.

In the case of a rectangular section X2 = :t b, x, = ± c,

Fl,m,n = J_
c

" [ m nJb d Jb [ m nJ' dtjX2 x, -b x, + tjX2 X3 -c X2
-b

and, for m > 1 or n > I,

Im,n = {4b m+ICn+'/(m + I) (n + 1), m and n even
0, m or n odd.

From (2.9) follow the stress-equations of motion of order m, n:

and the end conditions: one member of each of the products

T;~·rtUlm.n~ T'1~·nU2m.n. r;;·,t u3m.n

on XI = ± I.
Finally, the constitutive equations,

Trm,n = L Im+p.n+qcrsSsP,q~

p,q =0

are obtained by substituting (2.7) in (2.1) and the result in (2.10).

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

3. TRUNCATION OF SERIES FOR LOW FREQUENCIES

We begin the truncation by discarding, in the stress-strain relation (2.20), all S:n,,, for
m + n > 1 except those parts of S,m,n which contain u I m,n (but not u ;,\n); i.e. we retain, at least
temporarily, all orders of axial displacement and such displacements and displacement gradients
as appear in the zero-order and first order strains: S,O,O, S,',o, S,o". Thus, (2.20) becomes

p+Q<2

T,m,n= L Im+p,n+qc",S/,q+ L I m+",,,+q[c'6(p+l)u,P+l.q+c,s(q+l)u,p,q+lj. (3.1)
p,q=O p+q>1
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Next, in the expression (3.1) for the case m == 0, n == 0, i.e.

31

p+q<2

T,o,o == L 1McrsS/,q + L 1M [C'6(P + l)u ,p+"q + C'5(q + 1)UIP.q+I], (3.2)
P.q=O p+q>t

we set the zero-order contour stresses equal to zero:

(3.3)

and use the resulting equations to eliminate S20,o, S30,O and S40,O from the zero-order stress-strain
relations. By this process, we permit the free development of the zero-order contour strains. To
obtain the solution of (3.3) for T,o.o, T 50,o and T 6o,o, we first multiply (3.2) by the compliances s,,,

where the matrix of the Srs is the reciprocal of the stiffness matrix:

S"C,s == 8,,, r, s, t == 1... 6,

to obtain

'"
s"T,o,o == 10,oS,o,o+ L r,q[8'6(P + 1)u,P+I,q + 8'5(q + 1)ut,q+l

p+q>1

With (3.3), (3.5) become, for t == 1,5,6,

SI5 T,o,o + S55 T 5o,0 + S65 T60,o == 1o,oS5°'o + L JP,q (q + 1)ut,q+\
p+q>l

s I6 T IO,0 +S56 T5o,o + s66T60,0 == 1o,oS6°'o + L 1P,q (p + l)utP+1,q.
p+q>l

The solution of (3.6) for T10,o, T5o,o and T60,o is

(3.4)

(3,5)

(3.6)

'"
TaM == 1o,oc~'gSf3o,o + L 1M [C~'~(q + 1)U,P,q+1 + C?:~(p + l)ut+"q], a,{3 == 1,5,6, (3.7)

p+q>l

where

in which ISaf31 is the determinant

SII SI5 S'6
ISaf31 == S5t S55 S56

S61 S65 S66

and A af3 is the cofactor of element a{3 in ISaf3l:

(3.8)

(3.9)

All == S55S66-S;6,
A 5 ) == A ,5 ,

A 61 == A 16,

A'5 == S56S61 - S5IS66,
A 55 == SIIS66- S~6'

A65 = A65 ,

A '6 = S51S65 - S55S6J,

A 56 = S15S6' - SIIS65,

A 66 = SIlS55 - S~5'

(3.10)

Note that the final, zero-order stress-strain relations (3.7) contain the axial tensile stress and
strain:

(3.11)

for extensional motions, and the transverse shear stresses and the accompanying shear strains:



32 R. D. MINDLIN

(3.12)

(3.13)

which participate in flexural motions. The strains Ss0.0 and S60.0 are the ones that are set equal to
zero in the Bernoulli-Euler theory but are retained in Timoshenko's theory.

For later use, we record, here, the result, from (3.5), for the zero-order contour-shear strain:

(3.14)

Proceeding, now, to the first order stress-strain relations, we retain only the flexural stresses
and strains:

(3.15)

and the torsional stresses and strains:

(3.16)

i.e. we set

(3.17)

in (3.1), and use these eight relations to eliminate (i.e. allow the free development of) the
corresponding strains. Thus, we have, from (3.1), recalling that 11.0= 1°.1= 11,1 = 0,

T/'o = 12.oc"S/·0+ 2: I P+I·q[c,6(p + l)u/+ I.q + c,s(q + l)u IP.
q+I],

p+q>l

",0.1 = 10.2 S 0.1 + "" IP.q+l[ ( + 1) p+l.q + ( + 1) P.q+I].1, C" s L..J C,6 P u I C,S qUI ,
p+q>1

whence, upon multiplying by s", we have

s"T/'o = 12.oS/·0 + 2: F+I.
q

[O'6(P + l)uIp+l.q + Ors(q + l)u/·
q
+I

],

p+Q>l

S"T,O,' = I o.2Sro., + 2: I P.q+I[Or6(P + l)u/+ I
•
q + o,s(q + l)u IP.

q+I].
p+Q>l

(3.18)

After expanding the left hand sides of (3.18) and employing (3.17), we can solve the first of (3.18)
for T/'o and T/'o and the second of (3.18) for TIO.

I and T6o. l
:

T 1.0 = 12.0 I.OS 1.0 + "" I P + 1•q 1.0( + 1) p.q+1a Cab b L..J C a5 q U, ,
p+q>t

a, b = 1,5,

(3.19)

T
C

O. I = IO.2c~~Sdo., + 2: IP.q+lc~·~(p + l)u,P+I.q, C, d = 1,6,
p+q>l

where C ~~ = C ~~, c~~ = c~~ and

(3.20)

(3.21)
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Employing the strain-displacement relations in (3.11)-(3.13) and (3.15) and (3.16) and adopting
the notations

(3.22)

we may write the zero-order and first-order stress-displacement relations, for the low frequency
motions, as follows:

T"o.o == Io.oc~·gu~·.~ + 2: JP'q[c~'~(q + l)ut·q+1+ c~'~(p + l)UIP+I.qj,
p,q=O

a,{3 == 1,5,6 (3.23)

r 1.0 == I 2.oc I.O U 1.0 + " IP+l.q I.O( + 1) p.q+l. b == 1 5a ab b,l LJ CaS q UI a, "
p.q =0

(3.24)

ro.1 == Io.2co.luo.1 + " IP.q+1 O,I( + 1) p+l.q
c cd d.1 LJ C c6 P UI ,

P.q=O
c,d == 1,6. (3.25)

As the final step in the truncation process, we allow the free development of the higher order
axial warping of the sections of the bar, at the long wave, low frequency limit, by setting the force
associated with each of the ut'n,n, m + n > 1, equal to zero. From the equations of motion (2.18),
with j == 1, we omit the axial stress gradients T;r:'.~ and the accelerations 01m.n, which vanish at
infinite wave length and zero frequency, and we also omit the surface forces F l

m
•
n

, with the
result:

mT6
m

-
l.n + nT/,·n-1 == 0, m + n > 1. (3.26)

These are the equations which are to be used to eliminate the higher order U 1
m

•••

The stress-strain-displacement relations, for the stresses in (3.26), are obtained by setting

(3.27)

in (3.1) and solving for Tsm.n and T6 m••, with the result:

p+q<2

Tt·n == 2: Im+p,n+qcETlS",P.q + 2: I m +p,n+q[cE6(p + l)ut+ I,q + CES(q + l)ut,q+lj,
p,q =0 p +q:>1

(3.28)

where ~ == 5,6; 1/ == 5, 6 and

(3.29)

In (3.28), Sso.o, S60.0, SSI.O and S60,I are given in terms of displacements by (3.12), (3.13) and (3.16),
but S6

1
.
0 and SSO.I have to be calculated from (3.18):

I 2•oS6 '·0 == sa6 Ta
l,o- 2: ]p+I.q(p + l)UIP+I,q, a = 1,5,

p+q>1

(3.30)

I o.2S so.1 == scsTcO.I- 2: ]P,q+\q + l)ut·q+\ C = 1,6,
p+q>1

where Ta
l

•
O and TcO.

1 are given by (3.19).
In the isotropic case,

SIS==SI6=SS6=0, sss=s66=1/p" sll==I/E,

where p, is the shear modulus and E is Young's modulus. Then (3.23)-(3.25) become

IJSS Vol. 12. No. I-C

(3.31)
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T,o.o = 1°,0J.L(u~:~ + UIO.
I
) + J.L 2: F·q (q + 1)Ut"·q+l,

p+q:>t

T6o.0=Io'°J.L(u~:~+Ull,o)+J.L 2: r-q(p+I)ut"+I.q,
p+q:>l

T11,O = 12.0Eu ::~,

T/·o=I2·°J.Lu~:~+J.L 2: F+I·q(q+I)ut"·q+l,
p,q=O

T 0.1 - 1°.2 UO. I+ "IP.q+1( + 1) p+l.q
6 - J.L 2,t J.L £J P UI ,

P.q=O

(3.32)

(3.33)

(3.34)

and, from (3.14), S40.0 = O. Also, (3.28) and (3.30) become

p+q<2

T,,",n = J.L 2: I,"+p,n+qS/,q + J.L 2: I,"+P.n+q(q + I)ut p
•
q + l , m + n > 1,

P.q=Q p+Q>l

p+q<2

T6,"·n = J.L 2: I,"+P.n+qs/·q + J.L 2: I,"+P.n+q(p + I)uI P + 1
•
q

, m + n > 1
p,q=O p+q:>l

and

I2.oS61.0 = - 2: F+I,q(p + I)UI P+1,q
p+q>l

Io.2S,0.1 = - 2: F·q+\q + 1)u tP.
q+1

p+q>1

respectively.

(3.35)

(3.36)

4, STRESS·EQUATIONS OF MOTION AND BOUNDARY CONDITIONS

There is a stress-equation of motion (or equilibrium) for each of the surviving components of
displacement and rotation.

For the zero-order displacements UtO,O, U20.0, U30,O, we have, from (2.18) with m = 0, n =0, the
stress-equations of motion

T~:~ +F 1o.o = pIo.ou to,O,

T~:~ +F2o,0 = pIo.ou2°·0,

T~:~ +F 30.0 = pIo,ou3°'0,

(4.1)

in which the higher order accelerations have been omitted.
For the rotations u/,o and u 1°.

1 about X3 and X2, respectively, we have, from (2.18) with m = 1,
n = 0 and m =0, n = 1 and j = 1, the stress-equations of equilibrium

(4.2)

in which the rotatory inertias pI2,ou/'o and pIo.2ulo,1 and all the higher order inertias have been
omitted.

The rotation about XI (the torsional rotation) is defined as
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fJ = 4(u/,o - U20,1)

35

(4.3)

(Le. positive clockwise advancing in the positive direction along XI) and we note that, since
S~30 = 4(U3

1
,0 +U20,1),

(4.4)

The torsional stress-equation of motion is obtained by subtracting (2.18), with m = 0, n = 1, j = 2,
from (2.18), with m = 1, n = 0, j = 3, and neglecting the contour shear acceleration S~:~ and all the
higher order accelerations. The result is

(4.5)

in which F. = F3 1,0 - F2
o
,l.

The torque about the line of centroids of the bar is

(4.6)

positive M I producing positive fJ. The couples TII,o and Tlo,1 are the bending moments sometimes
designated by

(4.7)

i,e. positive counter-clockwise about the axes of X3 and X2, respectively, as viewed by an observer
looking toward the origin.

The equilibrium equations (3.26), one for each UI m,", m +n > 1, that is retained, constitute a
set of linear algebraic equations which are to be solved for the U 1

m
," in terms of the six dependent

variables: the three displacements UIO,O, U20,0, U3o,0 and the three rotations Ull,O, UIO,\ fJ. The

resulting expressions are then to be substituted in the constitutive equations (3.28), for the
anisotropic case, or (3.32)-(3.34) for the isotropic case, to obtain the stresses exclusively in terms
of the six dependent variables. This will permit the six stress-equations of motion, (4.1), (4,2) and
(4.5), to be expressed solely in terms of the six variables-resulting in a twelfth order system of
partial differential equations for the general, anisotropic case.

As for end conditions, all that remains of (2,19) is the prescription, at XI = ± I, of one member
of each of the six products

There are also six surface-tractions:

(4.9)

to be prescribed on the cylindrical or prismatic surface of the bar. Alternatively, one or more of
the six dependent variables may be specified-as a consequence of which the order of the system
of differential equations is reduced, as each of the corresponding equations becomes simply a
formula for a surface traction,

5, ISOTROPIC BAR, ELLIPTIC SECTION

In this and the next two articles, the equations of motion are derived for isotropic bars of
elliptic, triangular and rectangular sections to illustrate successively more complicated
contributions of the terms of the series of axial displacements.

For the ellipse, with semi-principal axes band c, along X2 and X3, respectively, the axial
displacement found from the 81. Venant theory is[19, p. 317]

(5.1)
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Accordingly, from the series of Ul m
.", m + n > 1, we retain only UII.I. Then (3.26) become

and (3.32)-(3.34) reduce to

(5.2)

T60.0 = IO,°!J.-(u~:~ +u/·o),

Tso,o = IO,°!J.-(u~:~ + UIO,I),

TIl.o = [2.oEu ::~, (5.3)

The second forms for T/'o and T/o are obtained from (4.4), in which Sg30, according to (3.14), is
zero for the isotropic case. Upon substituting these two expressions in (5.2) and solving for UI I.I ,
we find

(5.4)

from which the torque-twist relation is

From (2.14),

(5.5)

[0,2 = 7Tbc 3/4, [2.0 = 7Tb 3c /4.

Hence, the torsional rigidity is

which is the St. Venant value ([19], p. 323).

The equation of torsional motion is, from (5.5) and (4.5),

The equations of extensional and flexural motion are, from (5.3), (4.1) and (4.2):

Extensional,

Flexural (XI - X2 plane),

Flexural (XI - X3 plane),

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11 )
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There is no coupling between extensional, flexural and torsional motions and the torsional
warping of the sections does not affect the extensional and flexural stiffnesses. Equations (5.10)
and (5.11) are Timoshenko's beam equations [14] with the rotatory inertia terms and the
shear-correction factors omitted. If the eccentricity of the elliptic cross-section is not large
enough for the lowest contour-flexure mode to approach one of the fundamental axial shear
modes, the rotatory inertia terms pIz,ouII,o and pIo,ZutO,1 may be added to the right hand sides of
the rotational equations in (5.10) and (5.11), Concurrently, the Timoshenko shear-correction
factors should be introduced by replacing J-t by K/J-t in (5,10) and by K/J-t in (5.11) where Kz and
K3 are chosen to make the frequencies of the axial shear modes match the corresponding ones of
the three-dimensional theory[20]. The ranges of validity of the equations of flexure are thereby
raised to frequencies about 20% above those of the axial shear modes. With the rotatory inertia
terms omitted, "20% above" is reduced to about "50% below" and a slight improvement can be
effected by retaining the shear-correction factor but adjusting it to obtain a match between the
surface wave frequencies from the approximate and exact equations [21],

The lower the frequency, the less is the influence of the shear-deformation terms and, hence,
the shear-correction factor. At low enough frequencies, say less than 10% of the fundamental
axial shear frequency, the shear-deformation terms may be omitted entirely: thereby reducing
(5.10) and (5.11) to Bernoulli-Euler equations. This is done by eliminating the shear terms

between the deflection and rotation equations, following which the rotations UII,O and UtO,1 are
replaced by -u~:~ and -u~:~, respectively, with the results:

IZ,oEu~:~tll +pIo,ouzo,o = Fzo,o + F::~,

IO,z EU~:~1t 1+ pIo,ou3°'0 = F30,0 + F~::,

(5.10)'

(5.11)'

which are the Bernoulli-Euler equations,

6, ISOTROPIC BAR, TRIANGULAR SECTION

If the cross-section of the isotropic bar is an equilateral triangle with sides defined by[l9, p.
319]

(Xz - a) (xz - x3V3 + 2a) (xz +x3V3 +2a) = 0,

the axial displacement in torsion, according to St. Venant, is[l9, p. 319]

(6.1)

(6.2)

Therefore, of the Ut m,n, m +n > 1, we retain only UIZ,I and UIO,3; and the equations for calculating
them are, from (3.26) with m = 2, n = 1 and m = 0, n = 3:

2T6
1,1 + T/'o = 0, Tso.z = O.

For the stresses, we have, from (3.32)-(3.34),

Tto.o= Io.oEu~:~,

T,o.o = J-t [I0'o(u~:~ + U1°.1) + Iz,ou/,t + 3r·zUlo.3],

T60,0 = J-tIo.O(ug:~ + Ut 1.0),

T/'o = Iz.oEu ::~,

(6.3)

(6.4)
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and, from (3.35), noting that, in the present case, r· n
= 0 if n is odd,

T/'o = JL[[2.0(U~:~+ UIO,I) + [3,OU~:~ + r·oUI 2,1 + 3[2,2 UIO.\

T50,2 = JL [I0.2(U~:~ + U1°,1) + [1,2 U ~:~ + [2.2 U,2.1 +3[OA U1°.3],

T/ 1= !L(Il.2U~:~ +2I2.2UI 2.1),

in which, from (6,1) and (2.14),

[0,0 = 3v'3a2,

[0,2 = [2,0 = 3v'3a4f2,

t·2 = - [3,0 = 3v'3a5f5,

[0.4 = [4.0 = 3[2,2 = 9v'3a 6 f5.

(6.5)

(6.6)

Upon substituting (6.6) in (6.5) and the result in (6.3), we may solve the latter for U 1
2

•
1 and

UIO.
3

:

(6.7)

after noting, from (4.4) and (3.14), that u/'o = - uti = 8. Then, inserting (6.7) in the second, fifth
and seventh of (6.4) we find

T 0,0 _! [0,0 ( 0.0 + 0.1)
5 - 2 !L U 3.1 U, ,

(6.8)

The second of (6.8), with (6.6), yields the torsional rigidity:

(6.9)

which is the result from the St. Venant theory [22, p. 266]; and the equation of torsional motion is,
from (6.8), (6.6) and (4.5),

(6.10)

The equations of extensional and flexural motions are, from (6.4), (6.7), (4.1) and (4.2),

Extensional,

(6.11)

Flexural (XI - X2 plane),

(6.12)

Flexural (XI - X3 plane),

! [0.0 ( 0,0 + 0.1) + FO.o _ [o,ou·· 0.02 !L U 3.11 U 1,1 3. - P 3,

(6.13)

[ 0.2E 0,1 _! [0.0 ( 0.0 + 0,1) + F 0,1 - 0
UI,l1 " !L U3,1 UI I - •
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Inclusion of the axial displacements U/,I and UIO.3does not affect the flexural motion in the
XI - X2 plane-which is a plane of geometrical symmetry-but the flexural motion in the XI - X3
plane (parallel to a face of the triangular prism) is affected, as can be seen by the factor 1/2 in the
expression for T~0.0 in terms of displacements, in (6.8), and, consequently, in (6.13). This effect
diminishes as the frequency approaches zero, so that the two dispersion relations become the
same.

If the rotatory inertia terms are included, the two shear-correction factors for flexure may be
calculated from the circular frequency

w =(27T/3a)(JLI3p)~ (6.14)

(the same for both modes) obtained from the three-dimensional theory [23]. As a result, the two
dispersion relations again become the same.

7. ISOTROPIC BAR, RECTANGULAR SECTION

For the rectangular section, the axial displacement in St. Venant torsion is not expressible as a
finite polynomial. As an approximation we retain, of the U I m.n, m +n > 1, only the four terms

so that (3.26) become

ToO. 1 + T/'o = 0,

TOO.
3 +3T~ 1.2 = 0,

3T0
2,I +T/'o = 0,

and the stresses, from (3.32)-(3.34) and (3.35) are

T l o.o = 1o,oEu~:~,

T~o.o = 1o.oJL(u~:~ + Ulo,I),

Too.o = 1o.oJL(ug:~ + UI I.O),

TI I .o = 12,oEu::~,

and

ToO.
,
= JL (-1°.28.1 +10.2u, '" +10.4uI

,
·3+312.2uI3.

, +312.4u/·3),

T/o = JL(I2.08.J +12.ou, I
•
, +312.2uI

,
·3+r,ou/· I+314.2u/·3),

TOO.3= JL (-1°.4 8.1 +10.4 u, '·' + IO.ou /.3 +312Aut' +312.ouI3.3),

T/·2= JL (I2,28.1+12.2u, '·
1 +312,4u, ',3 +14.2uI3., +314Aut3),

T/" = JL(-12.28., +12.2uI '·' +12.4u,'·3 +314,2u /·1 +314A u/,3),

T~3.0 = JL(I4,08,1 +r·oUI I.1 +314.2uI ,·3+10,ou/" +31o.2u/·3),

T/·3= JL(- 12.48,1 +12.4u,
,
·J +12.ou/·3+3r·4UI 3.1 +3r·Ou,3.3),

T/,2 = JL(I4.28. 1 +r·2UI I,1 +3rAu/·3+1o.2u,3., +316 ,4ut 3),

in which the r· n are calculated from (2.14) or (2.17) for the section X2 = ± b, X3 = ± c.
Upon substituting (7.4) in (7.2) and solving for the axial displacements, we find

(7.1)

(7.2)

(7.3)

(7.4)
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where

The torsional rigidity is

where

12k, = e + I
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u,'" = (k 4- I) (14 +375e + 14k4)lJ.,/~,

UI
I
.
3 = 35k 2(1- 6e -7k4)e.l/c2~,

U,3.1 = 35e(7 +6e - k')(J.llb2~,

U,3.3 = 245k 2(k 4- 1)(J.,/3b2C2~,

(e -1)\7 + 212e + 7k4) 7e(13 - 25e - 25k' + 13k")
(e+1)(7+12Ik 2 +7k 4)+ (e+1)2(7+12Ie+7k 4) .

(7.5)

(7.6)

(7.7)

(7.8)

Values of k, for various values of k are listed in Table I along with the corresponding

Table 1. Torsional rigidity coefficient for rectangular section: k,: four terms of power series, k:: St. Venant solution

k = c;b k 1
k 1 k = c/b k

1
k

1

1.0 0.1407 0.1406 4 0.286 0.281

1.2 0.166 0.166 5 0.298 0.291

1.5 0.196 0.196 10 0.322 0.312

2.0 0,230 0.229 20 0.330 0.323

2.5 0.251 0.249 100 0.333 0.331

3.0 0.266 0.263 = 1/3 1/3

values [22, p. 277] calculated from St. Venant's solution. It may be seen, from (7.5), that, forthe
square section (~ = 1), U, t.1 and u ,3.3 are zero and the approximation reduces to

(7.9)

This simple approximation yields a torsional rigidity differing from St. Venant's result by only
about 0·1%. The fact that U,'·I is zero for the square section ac.counts for the failure of the
Bleustein-Stanley [5] equations for that section, as they used only the term u ,1.1 in their
approximation for the axial displacement. As ~ increases from unity, the error in torsional
rigidity increases to about 3% around ~ = 10 and then diminishes to zero as ~ approaches infinity;
at which limit U",3, U1

3
., and u/3

, in (7.5), are zero and U,I., = e." corresponding to the correct form:
UI = X2X 3e.1 of the St. Venant solution at that limit.

The equation of torsional motion is, from (7.7) and (4.5),

(7.10)

The equations of extensional and flexural motion are the same as (5.9), (5.10) and (5.11) for the
elliptic section-except that rO

•
o

, rO
•
2 and r2

•
O are given by (2.14).

8. ANISOTROPIC BAR, ELLIPTIC SECTION

The bar treated in this article has the same section as in Section 5, but the material is now
anisotropic. According to the St. Venant torsion theory, the axial displacement is

(8.1)



and the twist is[18, p. 638]
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(8.2)

where M I is the torque and M 2 and M 3 are the bending moments as defined in (4.6) and (4.7).
From (8.1), we conclude that we have to retain UI

I
•
I

, UIO.
2 and u/·o in the power series for UI m.n,

m + n > I, and, hence, the equilibrium equations

(8.3)

from (3.26). Now, as may be seen in (3.17) et seq., the last two of (8.3), which provide for the free
development of UIO.2and u/·o, have already been incorporated in the truncated equations. Hence,
we need apply only the first of (8.3) and include only U11,1 in the series of U Im.n, m + n > I, in the
expressions (3.23), (3.24) and (3.25), for the stresses, which become:

(8.4)

(8.5)

(8.6)

where all,l = UI',I + sgJo. Then, substituting the second of (8.5) and (8.6) into the first of (8.3) and
solving for a1,·1, we find

A I,' _ [(10.2 0.1 _ 12,0 I.o-.ll _ 10.2 0.1 0.1 _ 12,0 1.0 1.0,/(1°.2 0,1 + 12.oc 1.0-.
UI - C66 C55)U.I CI6UI,I CI5UI.IJ C66 55)'

With this value of all." we have, from (8.5) and (8.6),

(8.7)

1.0 1
2
,0 0,2 0.1 1.0 (1

2
.
0

0.2 1.0 0.1) 1.0 0.2 1.0 0.1 0.1T I = 1°.20.1+12,01.0[21 C66C 15 e,l+ 2 +1 CllC66 ul,l-1 CI5CI6UI.d, (8.8)
C66 C55 SllS55 - S15'

0.1 1°·2 [2.0 1.0 0,1 (1
0
.
2

2.0 0.1 1.0) 0.1 2.0 1.0 0.1 1,0]T I = 1°.20,1+12.01.0 -21 C55C I6 e.l + _ 2 +1 CllC55 ul,l-1 CI5CI6UI,I ,(8.9)
C66 C55 SllS66 Sl6

21°.212'°(2 1,0 o.l e + 1.0 0.1 1.0 0.1 1.0 0.1)TI.o TO,I- C55C66.1 CI5C66U'.I-CI6C55UI,1
5 - 6 - IO,2c~~ + 12.od's0 ,

where we have used, from (3.20) and (3,21),

(8.10)

Now, (8.10) is the torque M I; but, to get the torque-twist relation in a form comparable to
(8.2), we must first solve (8.8) and (8,9) for u~:: and U ::~ in terms of e,l. TIO,I (= M2) and T\I.o
(= - M3):



42

[
210.2 I.oe1.0 C15 .1

UI.' = - 2811866- 810
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Upon substituting these values in (8010) and solving for e,!, we find exactly the Voigt result (8.2).
The equations of motion are obtained by substituting (8.4), (8.8)-(8010) in (4.1), (4.2) and (4.5),

with the result

allUIOoO + al2u2000 + al3U30.0 + a,4ul l.O + a15ulo., + al68 +FtO = p1o,oii I0,0,

a21u,ooo + a22u2000 + a23u3000 + a24u,'oo + a25u,Ooi + a 20 e +F2000= p1000iitO,

a31 UIO,O,+ a32u20,0 + a33u30,0 + a34U 11 00+ a35ulo,1 + a 30 e +F30,0 = P1000U3000,

a41u,0,0 + a42u2000 + a43 u30,0 + a44u,I,O + a45u,001 +a46e- F I \,0 = 0,

a5IUIO.O + a52u20,0 + a53u30,0 + a54U ,1,0 + a55ulo,1 + a 56 e - F,O,I = 0,

a6lulo.o + a62u20.0 + a63u30,0 + a64UI \,0 +a65ut' + a66e - F. = - p(I2,0 +r 02)8,

where apq = aqp and

a44 = - a1200{I200[c :'1°C~so - (c :SO)2] +1o.2c :iOc~;na2 +1000C~~

a45 = a12,01°02 c :5°c~~ a2+1°.0c~~

a55 = - ar02{I0,2[c~il c~ - (c~~f] +12,0 c~'i dna 2 +1°.0c~so

a56 = 2a12.O1°02 c ~61 C~soa2

(8.11 )

(8.12)

(8013)

(8.14)

(8015)

(8.16)

Recalling the definitions of c~o~, c ~~ and c~~ in (309), (3020) and (3.21), it may be seen that all
the coupling between modes is solely through the compliances 815, 816 and 856. The connections
are depicted in Table 2. In general, extension, both flexures and torsion are coupled; although,
since al6 = 0, the coupling of torsion with extension is not direct, but through flexure. Torsion (e)
is coupled with the rotational component UI I.Oof flexure in the XI - X2 plane through a46, i.e.
through 815, and with the rotational component UIO. I of flexure in the XI - X3 plane through a56, i.e.
through 816. Extension is coupled with both components, U2000 and Ul loO, of flexure in the XI - X2

plane through al2 and a14, respectively, i.eo through 816; and with both components, U30.0 and Uloo1 ,
of flexure in the XI - X3 plane through al3 and a15, respectively, i.e. through 815. The two flexures
are coupled through 856.

If 856 is not zero, but both 815 and 816 are zero--as, for example, in the case of monoclinic
symmetry with XI the digonal axis, for which[24]

(8.17)
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Table 2. Coupling coefficients: anisotropic bar. elliptic section

Flexure Flexure

Extension xl - x2 xl - x3 Torsion
0,0 0,0 1,0 0,0 0,1 e

u1 u2 u 1 u3
u

1

Extension
(8.11)

"12 "14 "13 "15
0,0 8 16

8
16 8 15

8
15u

1

0,0 "12
(8.12)

"24 "23 "25
u 2 8 16 0,0 8 56 8

56Flexure c
66

Xl - x2 1,0 "14 "24 "34 "45 "46
u

1 8 16 0,0 (8.14) 8 56 8 56 8 15c
66

0,0
"13 "23 "34

(8.13)
"35

u
3 8 15 8 56

9
56 0,0

Flexure c ss
x - x

0,1 "15 "25 "45 "35 "561 3 u
1 9 15

9
56 9 56

0,0 (8.15 9 16C SS

Torsion
"46 "56

(8.16)
e 8

15 9 16

43

the two flexures are coupled, but torsion and extension are independent. If SS6 is not zero and
either SIS or SI6 is not zero, all four modes of motion are coupled. For example, suppose that SS6

and SIS are not zero, but SI6 is zero, as is the case of classes 3 and 3 of the trigonal system with X3

the trigonal axis, in which case [24]

Sit = S22, Sn = S23, S44 = S55, S66 = 2(slt - SI2), (8.18)

1
S2S= -sls=2s46,

1
S14= -S24=2sS6.

Then, with XI along the axis of the bar, extension is coupled, through an and alS, with XI -X3

flexure which is coupled, through a23, a2S, a43 and a45, with XI - X2 flexure which is coupled,
through a46, with torsion.

If SS6 is zero, crystal symmetry conditions require that either or both of SIS and SI6 must be
zero and thus a23, a2S, a43 and a45, which depend on SS6 and the product of SIS and S16, must be
zero. Consequently, if SS6 = 0, the coupling between the two flexures is absent. If S56 and only one
of SIS and SI6 are zero, there is coupling between extension and one of the flexures and between
torsion and the other flexure, but no coupling between the two pairs. For example, if it is SIS that
is zero, as in the case of classes, 4, 4 and 4/m of the tetragonal system, for which[24]

(8.19)

if X3 is the tetragonal axis, then extension is coupled with flexure in the XI - X2 plane and torsion is
coupled with flexure in the XI - X3 plane.

In all of the foregoing, the axis of the bar is that of XI. If the axis of the bar is that of X2 or X3,

subscripts 1, 2, 3 are permuted cyclically and, independently, subscripts 4, 5, 6 are permuted
cyclically.

Reduction of the ellipse to a circle does not affect the coupling.

9. QUARTZ BAR. ELLIPTIC SECTION

As an illustration of cyclical permutation, when the axis of the bar is not along XI, and as an
instance of coupling between torsion and one flexure and between extension and the other
flexure, but no coupling between the two pairs, consider the case of an alpha-quartz bar of elliptic
section with X3 the trigonal axis, XI a digonal axis and X2 the axis of centroids of the sections. The
restrictions on the compliances, for this case of crystallographic class 32 (and also 3m and 3m in
the absence of piezoelectric properties) of the trigonal system, are [24]
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(9.1)

As X2 is along the axis of the bar, S26, S24 and SM replace S '5, S '6 and S56, respectively, in Table 2
and, from (9.1), S26 and SM are zero but S24 is not. Furthermore, in Table 2, Uto.o, uta, U30.0, UI

I
.
O

,

U,O,I become U20.0, U30.0, U,O.O, U2
1
.0, U20." respectively. Thus, the coupling is between extension

(U20,0) and flexure (U30.0, U2
1
.
O
) in the X2 - X3 plane and between torsion (0) and flexure (u 1°'°, U20.

1
)

in the X2 - XI plane,
The equations of motion of the "extensional" and "torsional" groups become, respectively,

C~ioa 2U20,0 + C~40 a 2U30.0 + C~40au/'o +F 20.O/Io,0 = pii2o,0,

C~40 a 2U20,0 + C~40 a 2U30,0 + C~40 au/'U +F3
0.o/I0'0 = pii30,0,

C~40 aU20,0 + C~40 aU30,0 + [c ~~ - C~~(I2'01 [o.o)a 2] U21,0 +F 1,·0I[0.0 = 0,

and

C~a 2U ,0.0 + c~~ aU20. 1 + Flo,o =PUlo,o

C~60 aUlo,o - 0:(10,21 [0.0){/0,2[ C~i' C~I - (C~4?] + [2.0 C~i' C;,;,"}a 2U20,I,

+ C~60U20,1 +20: (12.0 /",21 [0.0)C~4' Ci,(,0 a 20 - F2o. 11[0,0 = 0,

2 [ 2,0[0,2 0.1 I,Oa 2 0.1 _ 4 [2,0/0,2 '.0 0,1 a211 F: _ ([2.0 + [0.2)ii
0: C24C66 U2 0: C66C44 0 - e - -P u,

Considering the extensional group (9,2), we set Flo,o, F 20.0, FI"O equal to zero and

and find

(pw
2
-1)2C~iO)A _1)2C~40B + i1)C~40C = 0,

- 1) 2C~40 A +(pw
2
-1) 2C~40)B + i1)C~40C = 0,

i1)C~40A + i1)c~~B + (c~~ + C~~1)2[2.0/I0,0)C = 0,

(9.2)

(9,3)

(9.4)

(9,5)

The dispersion relation is obtained by setting the determinant of the coefficients of A, B, C equal
to zero, resulting in a biquadratic equation on the frequency:

(9.6)

or, alternatively, a bicubic on the wave number:

(9,7)

where

and we note that, in the present case of trigonal symmetry,

(C~iO, C~40, C~40) = (S44, Sn, s24)/(sns44 - S~4),

Ciio = [c ~ioC~40 - (c ~40)2]1C~40 = 11 S22,

The coupling between extension and flexure is through S24. If S24 is set equal to zero, (9,6) and
(9.7) reduce to
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(9.8)

The first factor in (9.8) gives Bernoulli's result for dispersionless longitudinal waves; the second
factor gives the Bernoulli-Euler dispersion relation for low frequency flexural waves with
Timoshenko's correction for shear deformation: S44-1/2!Sn.

In the case of a bar of finite length, the boundary conditions most convenient for reproduction
in the laboratory (but, unfortunately, not the simplest mathematically) are those for free ends:

(9.9)

or, again on X2 = ± I, from (8.4) and (8.5) with one cyclical permutation of subscripts:

(9.10)

The three conditions (9.10) are such that all three roots ij2, of (9.7), are required for each 11.
Two of these roots are positive and one negative, so that two of the 1/ are real and one is
imaginary. For every 11 and each 1/;, i = 1,2,3, the simultaneous equations (9.5) define a set of
amplitude ratios A: B: C. For each 1/i, let

Then (9.4) may be written as

U20.0 = h(A l sin 1/IX2 +A 2sin 1/2X2 +A 3sinh 1/3X2),

U3
0
.
0 = h (A 10!21 sin 1/ lX2 +A 20!n sin 1/2X2 +A 30!23 sinh 1/3X2),

u/·o = A 10!31 cos 1/IX2 + A 20!32 cos 1/2X2 + A 30!33 cosh 1/3X2,

with

( -2)S22 _ 1/i
0!2i = S24 1+ 112 ,

(9.11)

(9.12)

(9.13)

where the upper signs are for i = 1, 2 and the lower signs are for i = 3.
In (9.12) the extensional motion is symmetric and the flexural motion is antisymmetric with

respect to the center of the bar. The converse set would be obtained by interchanging sine and
cosine (trigonometric and hyperbolic).

Upon substituting (9.12) in the boundary conditions (9.10), we find

where

A t,l3 11 cos 1/d +A 2f312 cos 1/21 +A 3f313 cosh 1/31 = 0,

A 11321 cos 1/d +A 2f322 cos 1/21 +A 3f323 cosh 1/31 = 0,

Alf33l sin 1/1/ +A2f332 sin 1/21 +A 3f333 sinh 1/31 = 0

f3li = [S44ijj + s2iiji0!2i + 0!3i)1!(s22s44- S~4)'

f32i = [S24iji + Sn(iji0!2i + 0!3;)]!(S22S44 - S~4)'

(9.14)

(9.15)

Finally, the frequency equation is obtained by setting the determinant of the coefficients of the
Ai, in (9.14), equal to zero:
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where
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B1= {331({312{323 - {3n{3I3),

B2= {332({313{321 - (323{3,,),

B3= {3d{311{3n - (321{3'2).

(9.16)

(9.17)

The solution for the torsional group (9.3) is similar as it involves only coupling between a
dispersionless mode (in this case torsion instead of extension) and a flexural mode (in this case in
the X2 - XI plane instead of the X2 - X3 plane) including the Timoshenko shear correction. Since, in
(9.3),

the coupling coefficient again depends on S24.

10. ANISOTROPIC BARS: RESTRICTIONS

There are certain situations in which the contour stresses (Tn, T33 , T23 , in a bar with axis
along XI) do not vanish as the frequency approaches zero; in which cases the equations deduced
in Sections 3 and 4 are not valid. The survival of contour stresses in torsional equilibrium may be
seen by inspecting Voigt's compatibility equations[18, p. 641] which must be satisfied by a St.
Venant torsion function ('P ) and the Airy plane strain function (X) for St. Venant-type torsion of
anisotropic bars.

If X I is the axis of centroids of the cross-sections of the bar and if the strains are independent
of x" the two stress functions are defined by

(10.1)
a2

T - X
22--a 2,

X3

in consequence of which the equilibrium equations

(10.2)

are satisfied. The strains, related to the stresses according to

(10.3)

must satisfy the compatibility equations

(10.4 )

where Eijk is the unit alternating tensor. Upon sUbstituting (10.1) in (10.3) and the result in (10.4),
we find Voigt's compatibility equations on 'P and X [18, p. 643]:

(10.5)
D 12 'P + Dnx = 0,

where K2 and K3 are the curvatures in the XI - X2 and X2 - X3 planes and
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(10.6)

in which

Srs = Sr. - SrlSl./SlI; r,s = 2, 3,4,5,6. (10.7)

It may be seen that, if D12'P = 0, X may be taken to be zero so that there need be no contour
stresses accompanying torsion and flexure. This is the case if 'P is quadratic in X2 and X3, as it is
for the elliptic section, or if

(10.8)

It is unlikely that (10.8) would be satisfied unless at least the line of centroids of the cross-sections
is an axis of two-fold symmetry, in which case

(10.9)

Thus, for the truncated equations to hold for anisotropic bars, the normal section must be either
elliptic or a plane of elastic symmetry.

11. ANISOTROPIC BAR, RECTANGULAR SECTION

The rectangular section is bounded by X2 = ± b, X3 = ± C, as in Article 7, but now the material
is anisotropic with XI a digonal axis of symmetry so that (10.9) hold and (3.8), (3.20), (3.21) and
(3.29) reduce to

(11.1)

Again, from the Ul
m

•
n

, m +n > 1, we retain only u/", U11.3, UI
3
" and U1

3
,3 along with the

corresponding equilibrium equations (7.2). Then, employing (11.1), we find, from (3.7), (3.11),
(3.12) and (3.13), the zero order stresses

Tso,o = Io,o[s66(u~:~ + UIO,I) - SS6(U~:~ + u,l.o)]/As6'

T6o,o = Io,o[s5s(u~:~ + U,I,O) - SS6(U~:~ + UIO,I)]/As6,

and, from (3.19), (3.15) and (3.16), the first order stresses

(11.3)

and

(11.4)

in which
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(11.5)

(11.6)

and we have employed (4.4), (3.14) and (3.7).
For the higher order stresses, we find, from (3.28),

S66T60,3 = lOA e., + Io,4a 1[,I + (S55S56!1l 56) (I".6 U,l,3 +312A u [3.[ +312.6u 1
3

.
3

) - (s ~6IOA!1l56Io.2)

X (I0A u[1.3 + 312.2U[3. [ + 312A u 1
3.3),

S55 Ts"2 = 12,2 e" + I 2.2 a[[.1 + (S55S56!1l 56) (31 2A u 11.3 +14.2u [3. [ +314A u /3) - (s ~612.2!1l5612.,,)

X (31 2
•
2UI I.3+ 14'"uI''' + 314.2u[,·3),

S66T6
2.[ = - 12.2e.1 +12.2a, [.[ + (S55S66!!i56) (I2A u 11.3 +314.2u [3.1 +314A u 1

3 .3) - (s~612.2!1l56Io,2)

X (I0AUI I.3 +312.2u/' + 312.4uI 3.3),

S55 T/'O = 14.0e., +14'Oa ILl + (S55S66!1l 56 ) (314,2 u[[.3 +16.OU[3,[ +316.2u 1
3.3) - (s ~614,O!1l561

2.,,)

X (312.2u,I.3 +14'''u/ 1 +314.2u/3),

S66T6
2.3= - 12A e.[ +12A al I.I + (S55S66!1l 56) (I2.6 UI I.3 +314A u,3.1 +314.6u/·3) - (s~612A!1l56I".2)

X (I0A UI [·3 +312.2uI3.[ + 312A uI3.3),

S55T/2= 14.2e.1 +14.2a[[.1 + (S55S56!1l 56) (314A u[1.3 +16.2u [3.[ +316A u 1
3

.
3

) - (s ~614.2! !i561
2.,,)

x (312.2 ul l,3 +14'Ou/1+314.2uI3.3),

The equations of extensional and flexural motions are obtained by substituting (11.2) and
(11.3) in (4,1) and (4,2) with the results:

Extensional:

(11.7)

Flexural (XI - X2 plane):

(11.8)

Flexural (x I - X3 plane):

(11.9)

Thus, the extensional mode is independent and the two flexural modes are coupled through S56.
To find the appropriate form of the equation of torsional motion, we must first express the

torque in terms of the twist. This may be done, as in Section 7, by substituting the stresses (11.4)
and (11.6), corresponding to (7.4), in (7.2) and solving for u[ [.[, U[1,3, U[3.1 and U1

3.3 in terms of e.[,
corresponding to (7.5). These solutions may then be inserted in (11.4) from which the torque,
Ts"° - T60," may be expressed in terms of the twist e.!. As in the case of the St. Venant theory of
torsional equilibrium ([19], p. 324), the algebra is simplified in the case S56 = 0; for then the solutions
for Ul 1

•
1

, u/·3
, u/ I and u[3.3, in terms of e. 1 become the same as (7.5) except that u[ [.1 is replaced

by a1
1

,1 and k2 is replaced by

(11.10)

As a result, the expression for the torsional rigidity, analogous to (7.7) is

(11.11)

where 1<1 is given by (7.8) with k replaced by k. Thus Table I holds for the case S56 = 0 if k and k l
are replaced by k and kI,

Finally, the equation of torsional motion (for the case S56 = 0) is, from (4.5) and (11.11),
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.... -I 3 2 2"
16k,S ss b CO.II +Fa = 2bc(b +c )pO.
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(11.12)

It may be observed that the torsional mode is independent of extension (as well as flexure)
despite the appearance of U,O,O in (11.5), as the whole of UII,! is eliminated from TS"o and T60.

1

through the equilibrium equations (7.2). This property holds whether or not SS6 = o.
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